Солнечная электростанция своими руками

Содержание

Солнечная электростанция своими руками

Стоимость солнечных панелей ежедневно снижается. Приобретение или самостоятельная сборка и установка автономных солнечных систем стали доступными для простых потребителей. Мы решили создать это руководство, чтобы потребители разобрались с нужными компонентами, и смогли собрать солнечную электростанцию для дома своими руками.

Для самостоятельного проектирования автономной системы нужны знания основ электротехники и определенные познания в математике. Для сборки самой простой солнечной электростанции потребуется 4 компонента:

  1. Солнечная батарея (PV панель);
  2. Контроллер заряда;
  3. Инвертор;
  4. Аккумулятор.

Кроме вышеуказанных компонентов, потребуется медный кабель, коннекторы, устройства защиты и кое-какая мелочевка. Дальше мы пошагово объясним, как можно выбрать компоненты именно под ваши потребности.

Шаг 1: Расчет нагрузки

Прежде, чем выбрать компоненты, необходимо рассчитать нагрузку приборов, которые будут подключаться к вашей солнечной электростанции и сколько времени они будут работать. Для этого нужно сделать следующее:

  1. Определите, какую технику (освещение, вентилятор, телевизор, насос и т.д.) вы будете подключать, и сколько времени (часов) она будет работать;
  2. Ознакомьтесь со спецификациями ваших приборов для определения их мощности;
  3. Рассчитайте величину потребляемого электричества в Ватт-часах (Вт*ч), которая равна произведению номинальной мощности ваших приборов (Вт) на время работы (ч).

Например Вы хотите включить какой-то прибор мощностью 10 ватт на 5 часов от солнечной панели. Количество потребленной электроэнергии будет: 10Вт х 5ч = 50Вт*ч. Таким же образом необходимо рассчитать общую величину потребляемой энергии, а именно рассчитать для каждого прибора и сложить полученные величины.

Пример: настольная лампа = 10Вт х 5ч = 50 Вт*ч + вентилятор = 50Вт х 2ч = 100Вт*ч, телевизор = 50Вт х 2ч = 100 Вт*ч, всего = 50 + 100 + 100 = 250 Вт*ч.

Когда закончите расчет нагрузки, пора приступать к выбору компонентов в соответствии с вашим требованием нагрузки.

Шаг 2: Выбор аккумуляторов

Все солнечные панели являются источниками постоянного тока. Электроэнергию они генерируют только днем. Если есть желание подключить нагрузку постоянного тока днем, то с этим нет никаких проблем, можно подключиться непосредственно от панелей. Но сделать это – не самое хорошее решение, потому что:

  • Большинству приборов необходимо постоянное номинальное напряжение для эффективной работы. Передаваемое солнечными панелями напряжение и ток непостоянны. Они меняются в зависимости от интенсивности солнечного света, пасмурная погода – «не есть хорошо».
  • Если вы хотите включить что-то ночью, то это что-то попросту не включится.

Указанная проблема решается использованием аккумуляторов, для накопления энергии в дневное время, и использования её в ночное. Существует много видов аккумуляторов. Аккумуляторы «открытого типа» с жидким электролитом, к которым относятся автомобильные аккумуляторы — предназначены для выдачи высокого тока в течение небольшого промежутка времени. Они не предназначены для глубокого разряда, у них задачи другие. Аккумуляторы для солнечных батарей являются аккумуляторами глубокого цикла, они легко переносят частичные разряды и предназначены для глубокого медленного разряда. Для солнечных электростанций хорошо подходят гелевые и литиевые аккумуляторные батареи (о том какие аккумуляторы лучше для солнечных электростанций мы писали тут).

Солнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими руками

Примечание: Перед тем как выбирать компоненты, определите, какую систему по напряжению вы хотите иметь: 12/24 или 48В. Чем выше напряжение, тем меньший ток будет в медных проводниках и тем меньше будут потери. Кроме того, чем выше рабочее напряжение, тем меньше потребуется сечение проводников. Чаще всего в качестве домашней электростанции используют системы с рабочим напряжением 12В или 24В. Это связано с тем, что часть домашних приборов можно питать напрямую от вашей электростанции, без двойного преобразования напряжения (вверх-вниз), которое приводит к потере мощности. В этом проекте рассмотрим систему 12В.
  • Емкость аккумулятора рассчитывается в ампер-часах (Aч).
  • Мощность (Вт)= Напряжение (В) х Ток (А). • Вт*час = Напряжение (В) х Ток (А) х Время (ч) = Вт*ч.
  • Напряжение батареи = 12В (для нашей системы).

Емкость аккумулятора (Ач) = Мощность нагрузки (Вт)*Время работы (ч)/напряжение(В) = 250/12 = 20,83Ач.

Нужно понимать, что КПД аккумуляторов не может быть 100%, чаще всего КПД равен 80%. Учитывая это, имеем емкость аккумулятора (Ач) = 20,83/0,8 = 26Ач. Поскольку мы используем преобразователь напряжения, который имеет свой КПД, обычно его также принимают равным 80%, добавим его: 26/0,8 = 32,5Ач. Но и это еще не все — даже не смотря на использование аккумуляторов глубокого цикла, для продолжительного срока службы, их не рекомендуется разряжать до полной разрядки, и по-хорошему нужно оставлять хотя бы 30% заряда — чем больше оставим, тем дольше он прослужит, получается: 32,5*1,3 = 42,25Ач Округляем вверх, для того что бы получить целое число и выбираем аккумуляторы глубокого разряда емкостью от 45 ампер-часов (Ач).

Шаг 3: Выбор панелей

О том как правильно выбирать солнечных батарей в блоге магазина MyWatt есть отдельная статья, поэтому останавливаться на этом долго не будем. Рассматривать будем только монокристаллические или поликристаллические, а аморфные и прочие тонкопленочные панели рассматривать не будем, в виду их быстрой деградации – потери мощности.

Основные отличия моно и поли:

Монокристаллические панели дороже и эффективнее, чем поликристаллические панели. Но в целом эффективность отличается незначительно, она зависит не только от типа ячейки, но и от качества самих ячеек и добросовестности производителя.

Характеристики солнечных панелей, как правило, приводятся к стандартным условиям испытаний (STC):

  • освещенность = 1 кВт/м2;
  • воздушная масса (AM) – 1,5;
  • температура – 25°C.

Как самостоятельно рассчитать мощность солнечных батарей?

Мощность солнечных батарей должна выбираться таким образом, чтобы потребляемая мощность нашими электроприборами, была восполнена обратно. Иными словами – сколько взяли, столько и нужно отдать + потери на преобразование, а также собственное потребления инвертора с контроллером заряда.

В связи с тем, что солнечный свет в течение дня поступает непостоянно и с разной интенсивностью, нельзя знать сколько выработает та или иная панель сегодня, но исходя их статистических данных это можно предположить достаточно точно.

Например, для средней полосы России в летнее время хорошим показателем считается если каждый 1 Ватт солнечной батареи выработал 6Вт*ч за световой день, но если рассматривать пасмурный, дождливый день этот показатель может быть в несколько раз меньше, поэтому при расчетах учтем этот факт и вместо 6Вт*ч, подставим 3Вт*ч.

Итак, наше потребление в Ватт-часах, с учетом КПД составило 32,5Ач * 12В = 390Вт*ч, разделим на 3Вт*ч и получим мощность солнечной батареи 130Вт, если у Вас получается не целое число – округляйте вверх.

Зимой и в весенне — осенний период запас по мощности требуется делать значительно больше, поскольку световой день короче — солнце находится над горизонтом меньше времени.

Шаг 4: Выбор контроллера заряда для солнечных батарей

Контроллер представляет собой устройство, которое помещается между солнечной панелью и аккумулятором. Он регулирует напряжение и ток, приходящий от солнечных панелей для поддержания надлежащего качества зарядки аккумуляторных батарей.

Чаще всего используют 12-вольтовые аккумуляторы, однако солнечные панели могут вырабатывать гораздо большее напряжение, чем требуется для зарядки аккумуляторов. Контроллер заряда фактически преобразует лишнее напряжение в ток, тем самым уменьшая время, необходимое для полной зарядки аккумуляторных батарей. Это позволяет солнечным батареям быть достаточно эффективными в любой момент дня.

Типы контроллеров заряда:

  1. Вкл./Выкл. (ON/OFF);
  2. ШИМ — широтно — импульсная модуляция (PWM — pulse-width modulation);
  3. ТММ — слежение за точкой максимальной мощности (MPPT — Maximum power point tracker).

Рекомендуем Вам отказаться от контроллера заряда Вкл./Выкл. (ON/OFF), так как это наименее эффективный контроллер. ТММ (MPPT) контроллеры имеют самую высокую эффективность, но цена на них выше. Таким образом, мы рекомендуем Вам использовать либо ШИМ (PWM), либо ТММ (MPPT) контроллеры, в зависимости от того, какими финансами вы оперируете.

  • Так как наша система рассчитана на 12В, контроллер заряда также должен поддерживать 12В;
  • Контроллер заряда выбирается по мощности солнечных батарей, для каждого контроллера в паспорте указывается максимальная мощность, которую к нему можно подключить. Для данной системы 12В на 130Вт прекрасно подойдет контроллер на 10А;
  • Если Вы хотите получать максимум энергии — выбирайте MPPT контроллер заряда, а если Вы хотите снизить стоимость системы, выбирайте ШИМ (PWM) контроллер заряда, но желательно проверенного производителя.

Шаг 5: Выбор инвертора

Солнечные батареи получают солнечные лучи и конвертируют их в электричество, они являются источниками постоянного тока (DC), также как аккумуляторная батарея, а нам для подключения розеток требуется переменный ток с напряжением 220В. Постоянный ток (DC) преобразуется в переменный ток (AC) через устройство под названием инвертор.

Виды волн переменного тока на выходе инвертора:

  1. Прямоугольная волна – меандр;
  2. Модифицированная синусоида;
  3. Чистая синусоида.

Инвертор прямоугольной волны дешевле всех, но подходит не для всех приборов. Инвертор модифицированной синусоиды тоже не предназначен для обеспечения электричеством приборов с электромагнитными или ёмкостными компонентами, типа: микроволновых печей; холодильников; различных типов электродвигателей. Инверторы с модифицированной синусоидой работают с меньшей эффективностью, чем инверторы с чистой синусоидой.

  • Мощность инвертора должна быть равной или больше, чем мощность всех приборов нагрузки, включенных одновременно;
  • Если есть приборы с пусковыми токами (электродвигатели), нельзя чтобы она превышала максимальную мощность инвертора с учетом других электропотребителей;
  • Предположим, что у нас будет: телевизор (50Вт) + вентилятор (50Вт) + настольная лампа (10Вт) = 110Вт;
  • Чтобы иметь запас по мощности, выбираем инвертор от 150Вт. Так как наша система 12В, мы должны выбрать инвертор постоянного тока 12В в 220В/50Гц переменного тока с чистой синусоидой.

Примечание: Такая техника как стиральная машина, холодильник, фен, пылесос и т.д. имеют начальную потребляемую мощность во много раз больше, чем их нормальная рабочая мощность. Как правило, это вызвано наличием электрических двигателей или конденсаторов в таких приборах. Это должно быть принято во внимание при выборе мощности преобразователя (инвертора).

Шаг 6: Монтаж солнечных модулей

После того как все рассчитано и куплены все комплектующие приходит время монтажа солнечной электростанции своими руками. Сначала выберите подходящее место на крыше, где нет никаких препятствий для солнечного света – никакой тени от деревьев и других построек.

Читать статью  Отопление частного дома солнечными батареями: схемы и устройство

Угол наклона солнечных батарей

Чтобы получить максимум от солнечной электростанции для дома или дачи, необходимо установить их в направлении, которое позволит захватить максимум солнечного света. Чем дольше панель будет находиться перпендикулярно солнцу, тем больше она выработает электроэнергии. Для средней полосы России оптимальный угол наклона 30° — 40° для лета и 70° — 80° для зимы.

С углом наклона разобрались, ориентация же панелей должна быть на юг, если нет такой возможности, то Юго-восток или юго-запад, но стоит понимать, что в таком случае выработки будет меньше. Существуют системы с изменяемым положением панелей (солнечный трекер), но его в этой статье рассматривать не будем в силу дороговизны реализации и наличием трущихся деталей.

Если у вас нет компаса, можете скачать приложение на свой смартфон и по нему определить, где у вас находится юг. Если нет возможности найти компас или установить приложение – запомните положение солнца в 12-00 часов – это и будет юг.

Стойку или крепеж для крыши солнечных батарей можно купить или смастерить своими руками хоть из дерева, хоть из металла. Главное, чтобы она была надежна, ведь панель имеет большую парусность, плюс нужно учесть расстояние между панелью и крышей – плотное прилегание недопустимо. Мы используем и рекомендуем Вам воспользоваться специальными крепежными элементами, именно для солнечных батарей.

На обратной стороне панели есть небольшая по размеру распаячная коробка, в ней находятся диоды Шоттки. Из распределительной коробки выводятся провода с уже установленными разъемами стандарта MC4. Всегда старайтесь использовать промаркированные провода, например красный и черный для подключения положительного и отрицательного разъемов. Если есть возможность подключить заземление, то используйте для этого желтый провод с зеленой полоской.

Шаг 7: Выбор последовательного или параллельного подключения

После расчета мощности аккумулятора и выбора солнечной панели вы должны подключить их. Во многих случаях довольно тяжело получить одной панелью или одним аккумулятором расчетные мощности, поэтому приходится объединять несколько панелей или объединять несколько аккумуляторов. Если у нас отдельно взятый аккумулятор или отдельно взятая панель соответствуют требованиям по напряжению, то соединяем их параллельно, через контроллер заряда, но бывают ситуации, когда нам понадобится последовательное соединение, например, для увеличения напряжения.

  • Последовательное соединение. Для подключения любого устройства к цепи последовательно необходимо подключить положительный полюс одного к отрицательному полюсу другого устройства. В нашем случае такими устройствами будут панели солнечных батарей или аккумуляторы. При таком подключении напряжения всех устройств складываются. Пример: Имеем 4 аккумулятора 12В. Соединяем их последовательно и в результате получаем 12 + 12 + 12 + 12 = 48 вольт. При таком подключении напряжения складываются, а ток остается неизменным. Таким образом, если каждый аккумулятор имел емкость 100Ач, то при последовательном мы получим связку 48В и емкостью 100Ач, запас электроэнергии в таком банке аккумуляторов составит 48В * 100Ач = 4800 Вт*ч – именно на этот параметр нужно обращать внимание, поскольку аккумулятор 100Ач на 12В имеет запас электроэнергии в 1200 Вт*ч, хотя «емкость» у них якобы одинаковая. Если бы это были не аккумуляторы, а солнечные панели, к примеру, по 17В и 5А (мощность в таком случае: 17В * 5А = 85Вт), то серия последовательно соединенных панелей имела бы напряжение = 17+17+17+17=68В, ток 5А и мощность бы составила 68В * 5А = 340Вт.
  • Параллельное подключение. При параллельном подключении необходимо подключить положительный полюс первого устройства к положительному полюсу следующего устройства и отрицательный полюс первого устройства к отрицательному полюсу следующего устройства. При параллельном подключении напряжение остается неизменным, а номинальный ток цепи является суммой токов каждого устройства в цепи. Пример: имеем два аккумулятора 12В, 100Aч соединенных параллельно, напряжение сети остается 12 вольт, но ток 100 + 100 = 200Aч. Аналогично, если 2 солнечные панели по 17В и 5А соединены параллельно, то имеем цепь с напряжением 17В и током 10А.

Шаг 8: Размещение оборудования

На этом моменте не будем долго задерживаться, тут нужно отталкиваться в от места установки. Главный момент — расположить оборудование недалеко друг от друга, чтобы использовать перемычки небольшой длины, для уменьшения потерь напряжения. Оборудование имеет активное или пассивное охлаждение и необходимо оставлять воздушный зазор согласно документации.

Шаг 9: Схема подключения солнечной электростанции

Солнечная электростанция своими руками

Сначала подсоединяем контроллер заряда. Обычно в нижней части контроллера заряда есть 3 пары контактов. Первый слева — подключение солнечной панели с отметками (+) и (-). Второй — выход для подключения аккумуляторов с отметками (+) и (-), и третий — выход для прямого подключения нагрузки постоянного тока, например, лампочки на 12В – инвертор туда подключать нельзя!

Нужно подсоединить контроллер заряда к аккумуляторам: черный (-) и красный (+). В этом случае контроллер сможет определить необходимое рабочее напряжение (12В, 24В или 48В), можно сразу настроить контролер заряда на нужный тип аккумулятора.

Примечание: Сначала подсоедините черный/отрицательный провод от батареи к отрицательному выводу контроллера, а затем подключите положительный провод. После подключения батареи к контроллеру вы увидите, как светится светодиод индикации уровня заряда.

Теперь нужно подключить панели к контроллеру. На тыльной стороне панели установлена распределительная коробка с 2 проводами (+) и (-) и коннекторами MC4, как правило, они небольшие по длине. Чтобы подсоединить панель к контроллеру заряда, необходимы провода со ответной частью разъемов MC4. После подключения солнечных панелей к контроллеру заряда загорится светодиодный индикатор, если солнечный свет присутствует.

Примечание: Если Вы не используете автомат защиты между солнечными батареями и контроллером заряда, всегда подключайте солнечную панель, когда на нее не попадают солнечные лучи, например вечером, если нет такой возможности, то обязательно укройте панель светонепроницаемой тканью, потому что ток от «работающей панели» может создать, опасную для здоровья, электродугу и повредить оборудование.

Затем устанавливаем инвертор на место и подключаем его к АКБ. В подключении инвертора, тоже ничего сложно нет, главное соблюдать полярность подключения.

Безопасность

Важно отметить, что мы имеем дело с постоянным током. Так положительный контакт панели (+) должен быть подключен к положительному контакту контроллера заряда (+) и отрицательный контакт панели (-) должен быть подключен к отрицательному контакту контроллера заряда (-). Если вы перепутаете контакты произойдет неполадка, которая может привести к пожару. Рекомендуется использовать провода разного цвета, красный (+) и черный (-). Если у вас нет возможности использовать провода разного цвета, то можно обернуть красной и черной изолентой провода рядом с клеммами.

Последними должны подключаться: нагрузка постоянного тока и инвертор.

Дополнительная защита

Хотя контроллер заряда и инвертор имеют встроенные предохранители для защиты, вы можете поставить выключатели и предохранители в следующих местах для обеспечения защиты:

  • В разрыве между солнечной панелью и контроллером заряда;
  • В разрыве между контроллером заряда и аккумуляторами;
  • В разрыве между аккумуляторами и инвертором.

Измерение и регистрация данных

Если вы заинтересованы в том, чтобы знать, сколько энергии вырабатывается Вашей солнечной электростанцией, то стоит сделать выбор контроллера заряда, который способен регистрировать данные по выработке электроэнергии и другие показатели.

После подключения всего вышеописанного система готова к использованию.

Глубокие технические подробности компонентов мы сознательно затрагивать не стали. Дело в том, что принцип построения солнечных электростанций небольшой мощности, остается почти неизменным.

Схемы и способы подключения солнечных батарей: порядок монтажа и варианты соединения солнечных панелей между собой

Солнечная электростанция своими руками

Альтернативные источники энергии в последние годы только набирают популярность. С развитием технологии производства повысилась эффективность и снизилась стоимость устройств, способных получать электрическую энергию без сжигания твёрдого топлива.

Солнечная электростанция своими руками

Многолетний тренд увеличения тарифов на электрическую энергию способствовал появлению на рынке бытовых приборов автономной генерации электроэнергии. Солнечные генераторы являются одним из примеров такого оборудования.

Солнечная электростанция своими руками

Солнечная панель (гелиопанель, солнечная батарея) – это высокотехнологичное и современное устройство автономной генерации электрической энергии, способное вырабатывать электричество под воздействием излучения как в ясную, так и в пасмурную погоду.

Солнечная электростанция своими руками

Установка батарей и сопряжённой инфраструктуры особой сложности не представляет и под силу практически любому человеку. Компоненты системы, обеспечивающие работу гелиоприёмников, имеют модульный тип и продаются в собранном и налаженном виде, готовые к подключению.

Солнечная электростанция своими руками

Конструкция гелиопанели

Солнечные панели имеют блочную структуру и состоят из энергетических ячеек, в которых и происходит генерация электрической энергии. Генерируемая сила тока прямо пропорциональна интенсивности излучения, которому подвергается во время работы гелиопанель.

Солнечная электростанция своими руками

Такая конструкция придаёт прибору дополнительную надёжность, поскольку выход из строя одной ячейки не повлечёт за собой неработоспособность всего устройства. Одна энергетическая ячейка в сборке гелиоприёмника способна генерировать напряжение до 0,7 вольта.

Солнечная электростанция своими руками

К инфраструктурным модулям солнечного генератора электроэнергии относятся:

  • Гелиопанели, в которых непосредственно и происходит преобразование светового излучения;
  • Аккумулятор, который накапливает электрическую энергию, полученную от гелиопанелей;
  • Контроллер заряда – прибор, поддерживающий напряжение аккумулятора в заданном диапазоне. Контроллер может управлять электрическими соединениями и, в случае необходимости, производить отключение некоторых модулей системы;
  • Инвертор – устройство, преобразующее постоянный ток, идущий от аккумулятора в переменный ток, напряжением 220 вольт для питания потребителей бытовой электрической сети;
  • Предохранители – защитные компоненты системы, устанавливаемые между всеми её узлами для предотвращения их повреждения в случае нештатной ситуации.

Солнечная электростанция своими руками

Модули соединяются между собой с помощью медных изолированных проводников и соединителей типа МС4.

Размещение панелей

До начала монтажа элементов бытовой солнечной электросистемы следует выбрать место расположения гелиопанелей.

Солнечная электростанция своими руками

Хорошим вариантом станет размещение панелей:

  • На крыше;
  • На балконе;
  • На территории участка.

Солнечная электростанция своими руками

Выбирая место расположения солнечных панелей следует предусмотреть их будущее обслуживание, а именно – очистку светочувствительной поверхности энергетических ячеек. Пыль, мусор, фекалии птиц, снег и тому подобные загрязнители значительно снижают выработку электричества.

Солнечная электростанция своими руками

Чтобы обеспечить максимальную генерацию энергии, следует сориентировать приёмники в южном направлении и стремиться к размещению солнечных батарей перпендикулярно падающим лучам.

Солнечная электростанция своими руками

Если гелиоприёмники размещаются не на сооружении, а непосредственно на территории участка, следует предусмотреть для них опорную конструкцию высотой не менее полуметра. Это предотвратит их повреждение от обильных осадков и поспособствует их охлаждению воздушными потоками.

Солнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими руками

Приёмнки должны размещаться так, чтобы за световой день на них не падала тень от каких-либо расположенных рядом объектов, поскольку это приведёт к снижению генерации энергии.

Солнечная электростанция своими руками

Поскольку гелиопанели эксплуатируются на открытом воздухе, опорная рама для их закрепления должна быть сконструирована из материалов, стойких к коррозии.

Фиксация панелей производится либо с помощью специальных прижимных фиксаторов, либо с помощью болтов, которыми нижняя часть рамы устройства соединяется с опорной конструкцией.

При монтаже панелей изменение их конструкции не допускается.

Солнечная электростанция своими руками

Схемы соединения гелиоприёмников

Поскольку солнечный генератор является модульной системой, существует несколько способов соединения её компонентов между собой, что позволяет задать ей необходимые рабочие характеристики, такие как мощность, напряжение и сила тока.

Солнечная электростанция своими руками

Параллельное соединение

Параллельное соединение панелей позволяет при неизменном напряжении увеличить силу тока, которая будет возрастать прямо пропорционально количеству подключаемых панелей.

При таком типе подключения проводником соединяются все одноимённые клеммы панелей, задействованных в системе.

Солнечная электростанция своими руками

Иными словами, «минусовая» клемма первой панели соединяется проводником с «минусовой» клеммой второй панели, «минусовая» клемма второй панели соединяется с аналогичной клеммой третьей и так далее, после чего проводник соединяется с отрицательным контактом контроллера.

Солнечная электростанция своими руками

Соединение «плюсовых» клемм панелей производится аналогичным образом.

Солнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими руками

Последовательное соединение

Последовательное соединение позволяет повысить напряжение в питающей сети.

Солнечная электростанция своими руками

Последовательное соединение осуществляется следующим образом: один из полюсов контроллера соединяется с клеммой соответствующей полярности первой солнечной батареи, вторая клемма этой батареи соединяется с клеммой противоположной полярности следующей батареи и так далее, образуя единую цепь.

Солнечная электростанция своими руками

Последняя клемма последней батареи системы соединяется с контроллером – полярность клемм этого соединения будет одноимённой.

Солнечная электростанция своими руками

  • Ориентация всех приёмников системы при таком типе подключения должна быть как можно более одинаковой по отношению к источнику излучения.
  • Разная эффективность работы панелей приведёт к нагреву приёмников, работающих с наименьшей эффективностью.
  • Причём нагрев этот будет происходить за счёт расходования части энергии, поступающей в систему от наиболее эффективно работающих панелей.
Читать статью  Как сделать отопление дома солнечными батареями – теория и практика

Солнечная электростанция своими руками

Таким образом, если нет возможности сориентировать приёмники более-менее одинаково по отношению к источнику света – следует использовать несколько контроллеров или отсекающие диоды.

Солнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими руками

Комбинированный способ

Наилучший и наиболее надёжный тип подключения. Обеспечивает работоспособность системы в случае выхода отдельных некритичных узлов из строя.

Солнечная электростанция своими руками

При этом способе подключения все имеющиеся гелиопанели разбиваются на группы. Подключение приёмников внутри групп осуществляется параллельно. Подключение групп к контроллеру производится по последовательной схеме.

Солнечная электростанция своими руками

При любом типе подключения следует использовать провода минимально возможной длины, а также избегать скруток. Это позволит снизить падение напряжения в сети.

Солнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими руками

Сборка системы

Соединение компонентов солнечной электросистемы осуществляется с помощью одножильных медных проводников сечением 4 мм кв. Желательно, чтобы изоляционный слой таких проводников был устойчив к воздействию ультрафиолетовых лучей.

Солнечная электростанция своими руками

Если возможности использовать такие проводники нет – соединители следует прокладывать в гофрированной трубе. Все соединения должны быть герметичными.

Солнечная электростанция своими руками

При сборке системы следует соблюдать полярность, учитывать допустимые технические условия работы всех устройств и не допускать их превышения, особенно это касается таких чувствительных устройств как контроллер и инвертор.

Солнечная электростанция своими руками

Между всеми узлами системы обязательно устанавливаются предохранители.

Солнечная электростанция своими руками

Последовательность подключения устройств выглядит следующим образом:

  1. Подключить к контроллеру аккумулятор.
  2. Подключить к контроллеру блок гелиоприёмников.
  3. Подключить к контроллеру нагрузку 12В.
  4. Если необходимо подключение к сети устройств, предназначенных для работы от сети с напряжением 220В, необходимо подключить к системе инвертор. Он подключается к аккумулятору. Прямое соединение инвертора и контроллера запрещено!
  5. Если инвертор подключен, он соединяется с нагрузкой 220В.

Солнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими рукамиСолнечная электростанция своими руками

После соединения всех узлов системы необходимо выполнить проверку правильности подключения, для этого:

  • Проверяется соблюдения полярности для всех соединений.
  • Проверяется напряжение, выдаваемое солнечными панелями, без подключенной нагрузки. Оно должно соответствовать паспортным значениям.

Солнечная электростанция своими руками

После того как все подключено и проверено производится заземление батарей. На этом установку солнечного генератора можно считать завершенной.

Варианты схем подключения солнечных батарей

Оглавление статьи: Варианты схем подключения солнечных батарей

Солнечные батареи чувствительные к правильности соединения и расположению всех элементов — небольшая ошибка приведет к критическому падению КПД. Обращают внимание не только на угол размещения панелей, но и на соотношение характеристик элементов (контроллеров, аккумуляторов, преобразователей и прочего). Правильный продуманный монтаж и схема подключения солнечных батарей обеспечит большую эффективность и окупаемость по сравнению с системой, подключенной небрежно. Рассмотрим варианты сборок автономных солнечных электростанций (СЭС), укажем какие лучшие, а также опишем подбор составляющих, предостережения, правила.

Схема 1

Основы и состав солнечных станций

Назначение гелиопанелей — сбор и концентрация (притягивание) на себе солнечного света (ультрафиолета), преобразование его через контроллеры, инвертор в электричество и подача его через аккумуляторные батареи или напрямую в сеть 220 В (или 380 В) дома.

Солнечные батареи

Излишки электричества можно продавать. Одно из преимуществ системы — полная автономность, автоматичность. Недостаток — зависимость от погоды, климата, затенения.

Солнечные панели

Стандартная цель пользователя — подобрать элементы так, чтобы они окупились за наименьший срок. Поэтому очень важна правильная сборка — от нее зависит эффективность оснащения.

схема 2

Элементы

Главные функциональные части СЭС:

  1. СБ — панели со специальным покрытием. Притягивая, задерживая, аккумулируя и концентрируя солнечный свет, тепло, передают его дальше для преобразования в электричество.
  2. Контроллер. Контролирует, показывает состояние АКБ, зарядку/разрядку. Прерывает зарядку, если идет перезарядка, и возобновляет ее.
  3. Инвертор. Преобразует энергию солнца в ток нужного параметра — переменный для бытовой сети (220 или 380 В). Можно ставить несколько таких устройств (как и контроллеров) — система будет стабильнее.
  4. Аккумуляторные батареи, блоки бесперебойного питания — обязательная часть, с ними энергия будет накапливаться и расходоваться соответственно нуждам потребителя, сети.
  5. Предохранители. Монтируются между панелями и их секциями, исключают короткие замыкания.
  6. Коннекторы, распространенный стандарт MC4.

Контроллер

Контроллеры могут быть встроенными внутрь инверторов, БПП. Сама солнечная батарея (поли или монокристалл) состоит из 4 слоев: стеклянное покрытие, выдерживающее удары града и подобные нагрузки, пленочное, прозрачное покрытие (EVA), гелиоэлемент (кремниевый), притягивающий и взаимодействующий с солнечными лучами, пленка для герметизации. Есть также разное размещение p и n слоев, переходов внутри. Тонкопленочные разновидности имеют особую структуру.

Коннекторы

Как подключить

Рассмотрим основы, этапы подсоединения элементов стандартной СЭС. По ходу станет понятной общая схема подключения солнечных панелей. Перед сборкой надо проверить все части на соответствие друг другу, иначе какой-либо прибор может выйти из строя из-за перегрузки или не запуститься.

  1. Сначала обычно соединяют контроллеры с аккумуляторами. Так проверят эти 2 элементы.
  2. Затем — первый элемент с панелями.
  3. АКБ с инвертором (ставится после аккумуляторов).
  4. Разводка по потребителям.

Очередность деталей на картинке ниже:

Очередность деталей

Советуем прочитать: узнайте как работает солнечная батарея, из каких материалов она может производиться.

Контроллер и АКБ

Почти всегда АКБ подсоединяются к гелиобатареям не напрямую, а через контроллер, регулирующий их зарядку/разрядку, осуществляющий согласно этого автоматическое вкл./выкл.

С другой стороны от аккумуляторов прокладывают провода к инвертору. Схема такая: соединяем блок аккумуляторов и контроллер (потом последний с СБ); затем — первый с инвертором.

Традиционное, а точнее, единственно правильное место элементов отображено на схеме:

Контроллер и АКБ

Бесконтрольное получение энергии опасно, вызывает как превышение расхода, так и чрезмерную зарядку. Эти два фактора губительны — быстро причиняют износ и неработоспособность АКБ. Чтобы исключить описанное между фотоэлементами и аккумуляторами ставят контроллер, управляющий режимом зарядки/разрядки (отдачи). Данная деталь обеспечивает нормальное взаимодействие и с инвертором, создающим стандартные 220 В и 50 Гц, устанавливаемым на выходе АКБ. Такая схема традиционная, самая оптимальная, позволяет не перегружать и использовать полный потенциал, она настолько привычная, что подразумевается по умолчанию.

Контроллер и АКБ 2

Соединение, схемы соединения, подключения контроллера солнечных батарей, фактически, это один вариант: провода, соблюдая полярность, заводят на клеммы устройства.

Без контроллеров

Чрезвычайно редко, только в специальных, требующих этого условиях, собирают упрощенную схему — модули без контроллера.

Без контроллеров

Важно, чтобы ток фотоэлементов заведомо не смог создать перезаряд АКБ, иначе особого смысла в сборке нет — батарея проработает некоторое время (даже несколько месяцев), но в конечном итоге намного быстрее выйдет из строя, поэтому не окупится.

фотоэлемент

Упрощенный метод используют, когда АКБ успеет произвести цикл зарядки/разрядки без перезаряда:

  • для регионов с коротким световым периодом суток;
  • в местностях, где положение солнца низкое;
  • с маломощными фотоэлектрическими модулями, потенциала которых не хватит для избыточной зарядки.

схема 3

Описанный способ, как подключить солнечные гальванические элементы предполагает установку защитного диода как можно ближе к АКБ. Задача элемента — предохранить аккумулятор от короткого замыкания: фотоэлементам оно не повредит, но для указанного узла составляет опасность. Также КЗ может причинить перегрев и расплавление проводки, что спровоцирует пожар.

Подключение аккумуляторов и СБ и контроллера

АКБ есть в составе комплекта СЭС или их можно докупить отдельно под ее параметры.

АКБ

Количество может быть неограниченным.

схема 4

Можно соорудить блок их батарей — пользователь получит значительный резерв, например, если часто использует электричество ночью. Желательно, чтобы АКБ были с одинаковыми характеристиками, их подключают последовательно. Размещают на стеллажах, внутри небольших выгородок.

схема 5

Проиллюстрируем с короткими объяснениями, как выглядит схема подключения, установка солнечной батареи к аккумулятору, подсоединение с контроллером.

Осматривают контроллер: определяют провода (плюс/минус, то есть красный/черный), клеммы. Обычно на изделии все контакты подписаны с графическими изображениями.

Осматривают контроллер

Присоединяем контакты к клеммам АКБ и батарей (красный провод «+», черный «−»). Закручиваем зажимы.

Присоединяем контакты к клеммам АКБ

После подсоединения табло контроллера покажет данные о нагрузке, напряжении, параметры вкл./выкл. аккумуляторов.

табло контроллера

Бюджетный контроллер с базовыми настройками, тремя парами клемм обслужит панели на 150 Вт. Можно установить несколько таких приборов, если много гелиопанелей.

Поэтапно как подключить солнечную батарею и перечисленные элементы (полярность соблюдают обязательно):

  1. Соединяют проводами АКБ и контроллер. Это покажет, как устройство обнаружит и покажет сетевое напряжение (стандартно 12, 24 В). Для аккумуляторов обычно – первая пара клемм.
  2. Подключают фотоэлектрические модули — вторая пара контактов.
  3. Отвод на потребителей с низковольтным питанием (12, 24 В) — третья пара клемм. Кроме оснащения наподобие, например, ночного освещения (можно настроить время вкл./выкл.), для другого оборудования с обычными параметрами питания (от 220 В) ее нельзя использовать. К ней можно и не подключать ничего. Другие потребители (220 В) запитываются через инвертор.

схема 6

Контроллер осуществляет постоянный мониторинг АКБ, при пиковых нагрузках являет собой буфер, защищающий ее от перегрузок. Два элемента рассматривают взаимосвязано.

Подключение контроллера к панелям

Далее, надо подсоединить солнечные батареи к контроллеру, схема как таковая отсутствует — проводки просто подключают в клеммы.

Осматриваем панели на целостность и отсутствие изъянов, брака. Снимаем защитную пленку. Более распространенные изделия — поликристаллические, это своеобразный, сравнительно недорогой вариант, именно их чаще всего применяют для загородных домов. Обычно они на 12 В, аккумуляторы также должны отвечать этому параметру, контроллер – более универсальное устройство обычно охватывает и это напряжение и его другой диапазон (24 В и так далее).

панели

Ниже внешний вид контроллера — прибора для регулировки заряда АКБ. Устройство автоматически отключает батарею от системы, когда заряд достигнет 11 В. Изучают инструкцию — даже китайские недорогие бренды часто техдокументацию переводят на русский. В таком случае там есть понятные схемы, варианты подключения. Далее, зажимают проводки на клеммах, они подписаны графическими символами — контакты к панелям, как правило, крайние левые.

внешний вид контроллера

Подсоединяют жилы, при этом следят за соблюдением полярности. Если провода из комплекта, то часто есть бирки, надписи. Для удлинения, подсоединения к оборудованию кабели оснащены штекерами «папа-мама». Именно с их помощью объединяют провода контроллера и идущие от панелей.

Подсоединяют жилы

Если подсоединяют несколько панелей, то применяют параллельное подключение — несколько проводков в клеммы, используют разветвитель. Можно поставить 2 и больше контроллеров.

Подключение инвертора

На контроллере есть клемма для низковольтных потребителей 12, 24 В, для них инвертор не потребуется — линия таких приборов подключаются на эти контакты напрямую. Есть ситуации, когда фотоэлементы используются так, только для такого оборудования.

Подключение инвертора

Для оснащения на 220 В (или для трехфазной сети 380 В) потребуется указанный прибор, так как он трансформирует ток в указанный вольтаж с частотой 50 Гц, то есть создает переменную величину как у обычной бытовой сети. Пользователь получит возможность запитывать все оборудование дома аналогично, как от центральной линии энергосбыта.

схема 7

Инвертор есть в составе комплекта СЭС или докупается отдельно. Алгоритм подключения следующий. Первый этап — распаковка, осмотр, проверка комплектации, ознакомление с инструкцией. Обязательно должны быть 2 кабеля («+» и «–») с «крокодилами». Далее, ими делают подключение к АКБ. А к инвертору шнуры подключаются с помощью специальных креплений: контакты заходят на клеммы, сверху зажимаются завинчивающимися пластиковыми крышечками.

контакты заходят на клеммы

К клеммам АКБ инвертор подсоединяется «крокодилами», соблюдая полярность:

К клеммам АКБ инвертор подсоединяется «крокодилами»

Варианты соединения солнечных панелей между собой

Особых проблем не возникает, если панель одна, также и вариант только один: подсоединяют к соответствующим разъемам узлов.

схема соединения сб

Если же фотоэлементов, секций — две или больше, то возможны несколько модификаций соединения солнечных панелей между собой:

  • параллельное соединение солнечных панелей. Подключаются между собой аналогичные по полярности клеммы. На выходе получаем 12 В;
  • последовательное соединение солнечных панелей: «+» первой панели к «−» второй. Оставшийся «−» первой и «+» второй — на контроллер. На выходе получим 24 В;
  • самая оптимальная схема последовательно-параллельная, комбинация. Предполагает наличие отдельных групп фотоэлементов. Внутри секции панели объединены параллельно. Сами же группы — последовательно. На выходе получим самый оптимальный результат.

схема параллельного соединения

Ниже схематически параллельная, последовательная и смешанная схемы как правильно подсоединить панели между собой:

как правильно подсоединить панели между собой

Параметры и характеристики элементов

Схема, порядок подключения, монтажа солнечных батарей загородного дома предполагает правильное соотношение всех элементов системы, совпадение их характеристик — все части должны подходить друг к другу по своим техпараметрам. Это актуально, если покупается не комплект, а детали по отдельности.

Читать статью  Как работает солнечная батарея в майнкрафт. Использование солнечной панели в майнкрафт

Контроллер

Рассмотрим, по каким параметрам подбирают узел мониторинга заряда аккумуляторов.

Мощность массива панелей

Требуется соответствие напряжению: номинальному (рабочее, замкнутое на нагрузку) и открытому контуру (без нагрузки, холостой ход).

Изделие должно выдерживать наибольшую силу входного тока от СБ (это же величина при режиме КЗ) — данный пункт редко обозначается инструкцией. Чтобы вычислить значение, надо узнать номинал контроллерного предохранителя и исчислить ток КЗ панелей контура. Для гелиопанелей последний указывается, как правило, всегда и он выше такового максимального рабочего (номинального), который также надо учесть. Это ток подсоединенного контура фотоэлементов, вырабатываемый ими при нормальной эксплуатации, и он ниже указанного по ТД для контроллера (производители там прописывают максимальное значение).

контроллер

Номинал по мощности. Это произведение рабочего напряжения на такой же ток фотогальванических модулей. Их мощность, объединенных с контроллером, должна сравниваться с этим номиналом или быть ниже, но не больше, иначе рассматриваемый узел, если он без предохранителя, перегорит. Но обычно такая защита есть, рассчитанная на перегруз в 10–20 % на протяжении 5–15 мин.

Напряжение солнечных модулей и АКБ

Стандартно есть модели на 12, 24 В и на два эти показатели с автопереключением. Например, пользователь может выбрать первую модель, если сделано соединение между собой нескольких панелей последовательно (в таком случае выдадут 12 В). Но, конечно же, лучше выбирать универсальное устройство.

Указанные цифры могут быть слишком малыми для мощных систем. Чтобы получить желаемую мощность, приходится ставить больше панелей и аккумуляторов, делая из них параллельные контуры. Сила тока значительно возрастает, что ведет к перегреву кабеля, электропотерям. При этом надо увеличивать сечение жил. Возникает потребность в чрезвычайно дорогих контроллерах под высокие токи.

мррт т20

Для исключения возрастания числа Ампер узлы мониторинга для мощных сборок выпускают под номинальное раб. напр. на 36, 48, 60 В, то есть кратно 12 В, чтобы гальванические модули можно было соединять последовательно. Такие контроллеры создают только для технологий зарядки ШИМ. У них вх. номин. напр. от панелей и номин. напр. контура АКБ должно сравниваться, например, 12 от СБ = 12 В к АКБ, 24 = 24 В, 48 = 48 В.

Контроллеры типа МРРТ работают с равным входным напряжением или в несколько раз большим, кратности 12 В нет. Обычно они рассчитаны на вход от панелей 50 В, сложные модели (мощные системы) могут быть до 250 В. Надо учитывать, что заводы указывают макс. вх. напр., и при подсоединении последовательно гальванических модулей надо складывать их макс. напр. (оно же «холостого хода»). Если проще сказать, то вх. макс. напр. любое от 50 до 250 В в зависимости от конкретного экземпляра. А номинал или миним. вх. напр. будет при этом 12, 24, 36, 48 В. При этом вых. напр. с АКБ у моделей МРРТ стандартное, может быть с автоопределением и поддержкой указанного выше диапазона вольтажа, а иногда и 60 или 96 В.

Модели МРРТ могут быть очень мощными с вх. напр. от гелиосистемы на 600–2000 В.

Максимальный входной ток и ток заряда АКБ

При ШИМ контроллере макс. вх. ток от фотоэлементов переходит в зарядный ток аккумуляторов, то есть узел не может заряжать большим значением ампер, чем производит соединенная с ним система. У МРРТ все по другому — вх. ток модулей и выходной для заряда батарей имеют разные характеристики, но они могут быть и равными, если номинал по напряжению модулей равен такому же номиналу АКБ, но тогда нет смысла в преобразовании МРРТ, эффективность падает. Первая характеристика должна превышать вторую в 2–3 раза. Если она ниже больше чем двухкратно, например, в полтора раза, то результативность критически падает, то же касается, когда превышает трехкратно. Ток на входе всегда будет равен или меньшим, чем таковой макс. вых. заряда аккумуляторов.

м20

Из вышеуказанного следует, что МРРТ надо подбирать по максимальному заряду аккумуляторов. Но чтобы данный ток не превысить, в инструкции прописывается максимум мощности подсоединяемых модулей при номин. напр. контура АКБ. Пример для контроллера МРРТ на 60 А: 800 Вт при напр. АКБ 12 В, 1600 — 36 В, 2400 Вт — 48 В и так далее.

Максимум нагрузки, зарядной ток, количество АКБ

Максимальная нагрузка, она же зарядной ток для аккумуляторов — характеристика не второстепенная.

Максимум мощности на выходе контроллера учитывается как с его стороны, так и со стороны аккумуляторов. Например, есть комплект последних с большой емкостью, для зарядки в течение дня узел должен выдать нужное значение. И такая же характеристика и возможности у гальванических элементов, естественно, должны быть не меньшими. Если параметры и узла мониторинга, и панелей будут способными удовлетворить потребности блока АКБ, то он не успеет зарядиться на протяжении дня, что будет причинять при постоянной нагрузке еще большую разрядку, и так регулярно, что приведет к быстрому износу.

схема 8

Ситуация, если АКБ с небольшой емкостью допустима. Возможности современных контроллеров нивелируют данный нюанс.

Но также рассмотрим проблемы, которые были у старых, или есть у низкокачественных, простых контроллеров. Их надо было подбирать с равной мощностью. При этом для АКБ макс. зарядной ток не должен был быть выше 30% от номинала емкости, то есть, если последняя 100 АЧ, то данный параметр не выше 30 А. При избыточной мощности системы контроллер заряжал бы аккумуляторы даже после их полного наполнения, без понижения зарядных Амперов, напряжения. Электролит при этом бы вскипал.

Современные образцы снабжены встроенной микросхемой, следящей за параметрами. В их микросхему прописывают программу заряда, управление осуществляется реле отключения. Такое изделие способно осуществлять настройку тока, напряжения заряда.

Тип аккумуляторов

Разные по химическому составу АКБ отличаются своим реагированием на ток, у них свои программы зарядки с несколькими алгоритмами. Контроллер настраивает процесс, напряжение, количество Ампер в соответствии с указанным, в выставленном диапазоне.

Тип аккумуляторов

Чаще применяют стандартные контроллеры с широтно-импульсной модуляцией (ШИМ или PWM). Есть также более качественные MPPT модели с технологией определения точки максимума по мощности от имеющегося массива панелей, надо сказать, что и они работают с ШИМ технологией: сначала такой узел отбирает максимальную величину, а далее, применяя ШИМ, осуществляет преобразование, зарядку АКБ по установленной программе.

аккумулятор глубокого разряда

Выбирают изделие именно с программой под имеющийся типа АКБ: щелочные, никелевые, литиевые (со своим блоком управления). Самые простые модели контроллеров имеют 1 или 2 программы для АКБ свинцово-кислотных, негерметичных, герметичных гелевых или AGM.

Опциональность

Наиболее затребованными являются такие функции (вырезка из характеристик товара интернет магазина):

Опциональность

Тип регулировки, трансформации напряжения

По данному параметру подбирают модели ШИМ или MPPT. Вкратце мы объяснили, как они функционируют. Если упростить, то для недорогих систем стандартных мощностей берут первые. Вторые — более качественные, для дорогих или мощных сборок.

Сборка, угол наклона

Саму установку, как соединять солнечные панели опишем вкратце, так как крепления и прочие нюансы также отдельные темы. Монтаж состоит в закреплении панелей на каркасе, есть несколько типов фиксаторов, кронштейнов: на шифер, на металл, черепицу, скрытые на обрешетку крыши.

Сборка

Опорные рейки, зажимы, прижимы (концевые и центральные) направляющие покупаются или есть в комплекте для выбранного варианта установки.

угол наклона

Соединяющие стыковые элементы создают из фиксирующих реек каркас. Применяют также клеммные элементы и держатели для жил — они объединяют алюминиевые рамки и заземляют их, фиксируют кабели.

Соединяющие стыковые элементы

Если монтаж производится на крышу с наклоном, то оптимальный угол для панелей 30… 40° в северных широтах больше, например, 45°. В общем, для самоочистки модулей дождем угол должен быть от 15°.

на крышу с наклоном

Указанные позиции создают опорными профилями, часто делают удобную сборно-разборную регулируемую, поворачивающуюся конструкцию.

Указанные позиции

При неравномерно освещении массива, панель на более светлом месте выдает больший ток, который частично расходуется на нагрев СБ нагруженных меньше. Чтобы исключить такое явление, используют отсекающие диоды, впаиваемые между плоскостями с внутренней стороны.

Читайте также: солнечные батареи для дачи (электроснабжение и освещение), выбор необходимых дополнительных устройств.

Провод

Подключение солнечных панелей, соединение их между собой делается кабелем с жилой сечением от 4 мм² — это стандартный минимум. Ниже этой цифры опускаться не рекомендовано, хотя иногда применяют и 2.5 мм², но это уже крайний случай (если модуль один, маломощный).

Подключение солнечных панелей

Можно взять толще — электропотери при этом не увеличиваются, а даже, наоборот, уменьшаются, так как снижается сопротивление, но цена возрастет намного. В сети есть специальные калькуляторы.

сечение кабеля

Провод должен быть стойким к холоду и огню (−30…+120° C), с надежной изоляцией, устойчивой к ультрафиолету. В спецмагазинах продаются уже «заточенные» под СБ кабели.

таблица сечения кабеля

Инвертор

Способы подключения солнечных батарей могут быть разными, но подбор параметров частей системы имеет общие принципы. Рассмотрим, как подобрать инвертор для СЭС разных типов.

инвертор для СЭС

Электростанция полностью автономного типа. Такая система не подключена к сети Энергосбыта (внешней магистрали), пользователь получает все электричество только от панелей. Подойдет инвертор off-grid. Эти автономные модели могут быть одно и трехфазными, способны преобразовывать постоянный токи разного вольтажа 12, 24, 48, 96 В и выше. Данные изделия самые дешевые (25–600 долл.), но это не означает их неэффективность — для не особо требовательной сборки указанного типа они подойдут, нет смысла брать более дорогие изделия, так как их потенциал не будет использоваться.

Электростанция полностью автономного типа

Схема с подключением к центральной сети. СЭС работает как автономно, так и совместно с главной магистралью. Но без аккумуляторов. Тут подойдет инвертор on-grid:

  • регулирует забор электричества, но не из АКБ, а из сети Энергосбыта, если модули не выдают достаточного его количества;
  • отправляет излишки продуцируемой энергии в центральную сеть, например, для продажи «по зеленым тарифам».

Стоимость изделия on-grid 200–20 000 $. Зависит от мощности конкретной модели, например, для устройства на 3–6 кВт — 2000 $, на 1000 кВт — 15 000 $ и выше. Для дома хватит 5 кВт.

состав сэс

Аккумуляторно-сетевая СЭС — самый распространенный оптимальный тип: вырабатывается энергия для запитывания приборов дома, излишек накапливается в АКБ, которые отдают заряд ночью и/или когда модули не справляются с нагрузкой, а также в центральную сеть для продажи. Если система из-за возросших потребностей не справится с нагрузкой, то предполагается забор энергии из магистрали Энергосбыта. Для таких условий подойдет модель hybrid (с сетевыми функциями). Цена начинается с 500–600 $ и до около 20 000 $.

Иные параметры

Дальше кратко подбор инвертора по иным критериям, которые необходимо учесть перед тем, как подключить солнечную панель.

подбор инвертора

  • 12 В /600 Вт;
  • 24 В/ 600…1500 Вт;
  • 48 В/ больше 1500 Вт.

как работает инвентор

Количество инверторов

Теоретически 1 прибора, если он подобран правильно под мощность, другие параметры, хватит для всей СЭС. Но при большом количестве пластин в нескольких линях желательно на каждую ставить свой инвертор. Причина в том, что нестабильность одной ветки (расположенность на чуть ниже освещаемой стороне) негативно влияет на общий инвертор, КПД понизится. А с отдельными такими устройствами этот недостаток нивелируется.

Количество инверторов

Хороший вариант — модель для нескольких отдельных MPPT входов (2– 4 и больше). Но цена такого оснащения часто неоправданно высокая.

схема 9

Видео по теме

Источник https://mywatt.ru/poleznaya-informaciya/solnechnaya-elektrostanciya-svoimi-rukami

Источник https://dekorexpert.ru/shemy-i-sposoby-podklyucheniya-solnechnyh-batarej/

Источник https://vashumnyidom.ru/elektropitanie/alternativnaya-energiya/sxema-podklyucheniya-solnechnyx-batarej.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: